Alt, Walter: Numerische Verfahren der konvexen, nichtglatten Optimierung

Eine anwendungsorientierte Einführung
CHF 47.90
Einband: Kartonierter Einband (Kt)
Verfügbarkeit: Lieferbar in ca. 20-45 Arbeitstagen
+ -
In der konvexen, nichtglatten Optimierung betrachtet man das Problem,
ein Minimum einer konvexen Funktion zu berechnen, die
nicht überall differenzierbar ist. Solche Aufgabenstellungen treten
bei der Auswertung von Messdaten und in vielen Anwendungen
der Wirtschaftswissenschaften und der Technik auf. Dieses Lehrbuch
behandelt numerische Verfahren zur Lösung nichtglatter, konvexer
Optimierungsprobleme, die sich im praktischen Einsatz bewährt
haben. Die Verfahren werden so dargestellt, dass der Leser in der
Lage ist, einfache Versionen selbst zu implementieren. Zahlreiche
numerische Beispiele demonstrieren die Anwendung der Verfahren.
Konvexe Optimierungsprobleme mit einer nichtglatten Zielfunktion treten in vielen Anwendungen auf, beispielsweise im Zusammenhang mit Penalty-Verfahren für differenzierbare Optimierungsprobleme, mit der Lagrange-Relaxation bei kombinatorischen Optimierungsproblemen oder bei der Strukturoptimierung von Stabwerken. Die wichtigsten numerischen Verfahren zur Lösung solcher Optimierungsprobleme sind Subgradienten- und Bundle-Verfahren. Das Buch gibt eine kompakte Einführung in die Grundlagen dieser Verfahren, die den Leser in die Lage versetzt, einfache Versionen der Verfahren selbst zu implementieren.
ISBN: 978-3-519-00513-1
GTIN: 9783519005131

Über den Autor Alt, Walter

Prof. Dr. Walter Alt, Universität Jena

Weitere Titel von Alt, Walter